
From computation to a reconstruction of (linear) logic

Team LoVe – LIPN Université Sorbone Paris Nord

Boris ENG (advisor: Thomas Seiller)

Context
Foundations of logic

Traditional proof theory logic→mathematical tools

Transcendental Syntax (Jean-Yves Girard) mathematical tools→ logic (emergence)

�

from an interactive model of computation (think of a society)

�

behaviours : interaction classification

�

types : pre-made tests classification

My thesis : turn it into a technical work.

�

Assumption : a reconstruction of logic starts from linear logic.

�

Goal : make the logical mechanisms explicit.

1/5

Context
Foundations of logic

Traditional proof theory logic→mathematical tools

Transcendental Syntax (Jean-Yves Girard) mathematical tools→ logic (emergence)

�

from an interactive model of computation (think of a society)

�

behaviours : interaction classification

�

types : pre-made tests classification

My thesis : turn it into a technical work.

�

Assumption : a reconstruction of logic starts from linear logic.

�

Goal : make the logical mechanisms explicit.

1/5

Context
Foundations of logic

Traditional proof theory logic→mathematical tools

Transcendental Syntax (Jean-Yves Girard) mathematical tools→ logic (emergence)
�

from an interactive model of computation (think of a society)

�

behaviours : interaction classification

�

types : pre-made tests classification

My thesis : turn it into a technical work.

�

Assumption : a reconstruction of logic starts from linear logic.

�

Goal : make the logical mechanisms explicit.

1/5

Context
Foundations of logic

Traditional proof theory logic→mathematical tools

Transcendental Syntax (Jean-Yves Girard) mathematical tools→ logic (emergence)
�

from an interactive model of computation (think of a society)

�

behaviours : interaction classification

�

types : pre-made tests classification

My thesis : turn it into a technical work.

�

Assumption : a reconstruction of logic starts from linear logic.

�

Goal : make the logical mechanisms explicit.

1/5

Context
Foundations of logic

Traditional proof theory logic→mathematical tools

Transcendental Syntax (Jean-Yves Girard) mathematical tools→ logic (emergence)
�

from an interactive model of computation (think of a society)

�

behaviours : interaction classification

�

types : pre-made tests classification

My thesis : turn it into a technical work.

�

Assumption : a reconstruction of logic starts from linear logic.

�

Goal : make the logical mechanisms explicit.

1/5

Context
Foundations of logic

Traditional proof theory logic→mathematical tools

Transcendental Syntax (Jean-Yves Girard) mathematical tools→ logic (emergence)
�

from an interactive model of computation (think of a society)

�

behaviours : interaction classification

�

types : pre-made tests classification

My thesis : turn it into a technical work.

�

Assumption : a reconstruction of logic starts from linear logic.

�

Goal : make the logical mechanisms explicit.

1/5

Context
Foundations of logic

Traditional proof theory logic→mathematical tools

Transcendental Syntax (Jean-Yves Girard) mathematical tools→ logic (emergence)
�

from an interactive model of computation (think of a society)

�

behaviours : interaction classification

�

types : pre-made tests classification

My thesis : turn it into a technical work.

�

Assumption : a reconstruction of logic starts from linear logic.

�

Goal : make the logical mechanisms explicit.

1/5

Context
Foundations of logic

Traditional proof theory logic→mathematical tools

Transcendental Syntax (Jean-Yves Girard) mathematical tools→ logic (emergence)
�

from an interactive model of computation (think of a society)

�

behaviours : interaction classification

�

types : pre-made tests classification

My thesis : turn it into a technical work.

�

Assumption : a reconstruction of logic starts from linear logic.

�

Goal : make the logical mechanisms explicit.

1/5

Stellar Resolution
The space of computation

Independent stars with (un)polarised first-order term as rays.
Constellations (kind of programs) as multisets of stars.

ϕ1g(x)
+a(x)

−b(x)

ϕ2

−a(f(y)) +c(y)

t and u are matchable with unifier θ = {x 7→ f(y)}.
Accidentally : (query-free) logic programming and tiling meet (e.g DNA computing).

2/5

Stellar Resolution
The space of computation

Independent stars with (un)polarised first-order term as rays.
Constellations (kind of programs) as multisets of stars.

ϕ1g(x)
+a(x)

−b(x)

ϕ2

−a(f(y)) +c(y)

t and u are matchable with unifier θ = {x 7→ f(y)}.

Accidentally : (query-free) logic programming and tiling meet (e.g DNA computing).

2/5

Stellar Resolution
The space of computation

Independent stars with (un)polarised first-order term as rays.
Constellations (kind of programs) as multisets of stars.

ϕ1g(f(y))
+a(x)

−b(f(y))

ϕ2

−a(f(y))
+c(y)

t and u are matchable with unifier θ = {x 7→ f(y)}.

Accidentally : (query-free) logic programming and tiling meet (e.g DNA computing).

2/5

Stellar Resolution
The space of computation

Independent stars with (un)polarised first-order term as rays.
Constellations (kind of programs) as multisets of stars.

ϕ1 ∪ ϕ2g(f(y))
+c(y)

−b(f(y))

t and u are matchable with unifier θ = {x 7→ f(y)}.

Accidentally : (query-free) logic programming and tiling meet (e.g DNA computing).

2/5

Stellar Resolution
The space of computation

Independent stars with (un)polarised first-order term as rays.
Constellations (kind of programs) as multisets of stars.

ϕ1 ∪ ϕ2g(f(y))
+c(y)

−b(f(y))

t and u are matchable with unifier θ = {x 7→ f(y)}.
Accidentally : (query-free) logic programming and tiling meet (e.g DNA computing).

2/5

What is a proof?
From proof trees to proof structures

Proof tree π :

ax
` B,B⊥

ax
` A,A⊥ ⊗

` A⊥,B⊥,B⊗ A `
` A⊥ ` B⊥,B⊗ A `

` (A⊥ ` B⊥)` (B⊗ A)

Linear Logic proof structure S (more general) :

C := (A⊥ ` B⊥)` (B⊗ A)

A⊥ ` B⊥

A⊥ B⊥

B⊗ A

B A

Logical correctness : does S pass tests T1, ..., Tn ? If so, proof of C.
Translation into constellations : correct structure = core constellation + set of tests

�

typing by stereotypes : passing T1, ..., Tn implies  : C.

3/5

What is a proof?
From proof trees to proof structures

Proof tree π :

ax
` B,B⊥

ax
` A,A⊥ ⊗

` A⊥,B⊥,B⊗ A `
` A⊥ ` B⊥,B⊗ A `

` (A⊥ ` B⊥)` (B⊗ A)

Linear Logic proof structure S (more general) :

C := (A⊥ ` B⊥)` (B⊗ A)

A⊥ ` B⊥

A⊥ B⊥

B⊗ A

B A

Logical correctness : does S pass tests T1, ..., Tn ? If so, proof of C.
Translation into constellations : correct structure = core constellation + set of tests

�

typing by stereotypes : passing T1, ..., Tn implies  : C.

3/5

What is a proof?
From proof trees to proof structures

Proof tree π :

ax
` B,B⊥

ax
` A,A⊥ ⊗

` A⊥,B⊥,B⊗ A `
` A⊥ ` B⊥,B⊗ A `

` (A⊥ ` B⊥)` (B⊗ A)

Linear Logic proof structure S (more general) :

C := (A⊥ ` B⊥)` (B⊗ A)

A⊥ ` B⊥

A⊥ B⊥

B⊗ A

B A

Logical correctness : does S pass tests T1, ..., Tn ? If so, proof of C.

Translation into constellations : correct structure = core constellation + set of tests

�

typing by stereotypes : passing T1, ..., Tn implies  : C.

3/5

What is a proof?
From proof trees to proof structures

Proof tree π :

ax
` B,B⊥

ax
` A,A⊥ ⊗

` A⊥,B⊥,B⊗ A `
` A⊥ ` B⊥,B⊗ A `

` (A⊥ ` B⊥)` (B⊗ A)

Linear Logic proof structure S (more general) :

C := (A⊥ ` B⊥)` (B⊗ A)

A⊥ ` B⊥

A⊥ B⊥

B⊗ A

B A

Logical correctness : does S pass tests T1, ..., Tn ? If so, proof of C.
Translation into constellations : correct structure = core constellation + set of tests

�

typing by stereotypes : passing T1, ..., Tn implies  : C.

3/5

What is a proof?
From proof trees to proof structures

Proof tree π :

ax
` B,B⊥

ax
` A,A⊥ ⊗

` A⊥,B⊥,B⊗ A `
` A⊥ ` B⊥,B⊗ A `

` (A⊥ ` B⊥)` (B⊗ A)

Linear Logic proof structure S (more general) :

C := (A⊥ ` B⊥)` (B⊗ A)

A⊥ ` B⊥

A⊥ B⊥

B⊗ A

B A

Logical correctness : does S pass tests T1, ..., Tn ? If so, proof of C.
Translation into constellations : correct structure = core constellation + set of tests

�

typing by stereotypes : passing T1, ..., Tn implies  : C.
3/5

Behaviours
using realisability techniques

Typing by behaviour : classify from how  interacts.

Pre-behaviour set of constellations (programs) A.

Orthogonality Define "good interaction".

�

for instance ⊥′⇔ Ex(] ′) terminates.

�

A⊥ set of good partners.

Behaviour when A = A⊥⊥.

Tensor A⊗ B := {A] B | A ∈ A,B ∈ B}⊥⊥.

Other "connectives" A` B := A⊥ ⊗ B⊥ and A(B := A⊥ ` B.

Adequation  ∈ A behaves as expected from the tests for A.

4/5

Behaviours
using realisability techniques

Typing by behaviour : classify from how  interacts.

Pre-behaviour set of constellations (programs) A.

Orthogonality Define "good interaction".

�

for instance ⊥′⇔ Ex(] ′) terminates.

�

A⊥ set of good partners.

Behaviour when A = A⊥⊥.

Tensor A⊗ B := {A] B | A ∈ A,B ∈ B}⊥⊥.

Other "connectives" A` B := A⊥ ⊗ B⊥ and A(B := A⊥ ` B.

Adequation  ∈ A behaves as expected from the tests for A.

4/5

Behaviours
using realisability techniques

Typing by behaviour : classify from how  interacts.

Pre-behaviour set of constellations (programs) A.

Orthogonality Define "good interaction".

�

for instance ⊥′⇔ Ex(] ′) terminates.

�

A⊥ set of good partners.

Behaviour when A = A⊥⊥.

Tensor A⊗ B := {A] B | A ∈ A,B ∈ B}⊥⊥.

Other "connectives" A` B := A⊥ ⊗ B⊥ and A(B := A⊥ ` B.

Adequation  ∈ A behaves as expected from the tests for A.

4/5

Behaviours
using realisability techniques

Typing by behaviour : classify from how  interacts.

Pre-behaviour set of constellations (programs) A.

Orthogonality Define "good interaction".

�

for instance ⊥′⇔ Ex(] ′) terminates.

�

A⊥ set of good partners.

Behaviour when A = A⊥⊥.

Tensor A⊗ B := {A] B | A ∈ A,B ∈ B}⊥⊥.

Other "connectives" A` B := A⊥ ⊗ B⊥ and A(B := A⊥ ` B.

Adequation  ∈ A behaves as expected from the tests for A.

4/5

Behaviours
using realisability techniques

Typing by behaviour : classify from how  interacts.

Pre-behaviour set of constellations (programs) A.

Orthogonality Define "good interaction".
�

for instance ⊥′⇔ Ex(] ′) terminates.

�

A⊥ set of good partners.

Behaviour when A = A⊥⊥.

Tensor A⊗ B := {A] B | A ∈ A,B ∈ B}⊥⊥.

Other "connectives" A` B := A⊥ ⊗ B⊥ and A(B := A⊥ ` B.

Adequation  ∈ A behaves as expected from the tests for A.

4/5

Behaviours
using realisability techniques

Typing by behaviour : classify from how  interacts.

Pre-behaviour set of constellations (programs) A.

Orthogonality Define "good interaction".
�

for instance ⊥′⇔ Ex(] ′) terminates.

�

A⊥ set of good partners.

Behaviour when A = A⊥⊥.

Tensor A⊗ B := {A] B | A ∈ A,B ∈ B}⊥⊥.

Other "connectives" A` B := A⊥ ⊗ B⊥ and A(B := A⊥ ` B.

Adequation  ∈ A behaves as expected from the tests for A.

4/5

Behaviours
using realisability techniques

Typing by behaviour : classify from how  interacts.

Pre-behaviour set of constellations (programs) A.

Orthogonality Define "good interaction".
�

for instance ⊥′⇔ Ex(] ′) terminates.

�

A⊥ set of good partners.

Behaviour when A = A⊥⊥.

Tensor A⊗ B := {A] B | A ∈ A,B ∈ B}⊥⊥.

Other "connectives" A` B := A⊥ ⊗ B⊥ and A(B := A⊥ ` B.

Adequation  ∈ A behaves as expected from the tests for A.

4/5

Behaviours
using realisability techniques

Typing by behaviour : classify from how  interacts.

Pre-behaviour set of constellations (programs) A.

Orthogonality Define "good interaction".
�

for instance ⊥′⇔ Ex(] ′) terminates.

�

A⊥ set of good partners.

Behaviour when A = A⊥⊥.

Tensor A⊗ B := {A] B | A ∈ A,B ∈ B}⊥⊥.

Other "connectives" A` B := A⊥ ⊗ B⊥ and A(B := A⊥ ` B.

Adequation  ∈ A behaves as expected from the tests for A.

4/5

Behaviours
using realisability techniques

Typing by behaviour : classify from how  interacts.

Pre-behaviour set of constellations (programs) A.

Orthogonality Define "good interaction".
�

for instance ⊥′⇔ Ex(] ′) terminates.

�

A⊥ set of good partners.

Behaviour when A = A⊥⊥.

Tensor A⊗ B := {A] B | A ∈ A,B ∈ B}⊥⊥.

Other "connectives" A` B := A⊥ ⊗ B⊥ and A(B := A⊥ ` B.

Adequation  ∈ A behaves as expected from the tests for A.

4/5

Behaviours
using realisability techniques

Typing by behaviour : classify from how  interacts.

Pre-behaviour set of constellations (programs) A.

Orthogonality Define "good interaction".
�

for instance ⊥′⇔ Ex(] ′) terminates.

�

A⊥ set of good partners.

Behaviour when A = A⊥⊥.

Tensor A⊗ B := {A] B | A ∈ A,B ∈ B}⊥⊥.

Other "connectives" A` B := A⊥ ⊗ B⊥ and A(B := A⊥ ` B.

Adequation  ∈ A behaves as expected from the tests for A.
4/5

Conclusion and future works

A lot of ways to extend the idea.

• extension to full linear logic, second and first order.

�

better design for logic?

• hopes in complexity theory (descriptive?).

�

better understanding of logic, better understanding of complexity?

Thank you for listening!

5/5

Conclusion and future works

A lot of ways to extend the idea.

• extension to full linear logic, second and first order.

�

better design for logic?

• hopes in complexity theory (descriptive?).

�

better understanding of logic, better understanding of complexity?

Thank you for listening!

5/5

Conclusion and future works

A lot of ways to extend the idea.

• extension to full linear logic, second and first order.

�

better design for logic?

• hopes in complexity theory (descriptive?).

�

better understanding of logic, better understanding of complexity?

Thank you for listening!

5/5

Conclusion and future works

A lot of ways to extend the idea.

• extension to full linear logic, second and first order.

�

better design for logic?

• hopes in complexity theory (descriptive?).

�

better understanding of logic, better understanding of complexity?

Thank you for listening!

5/5

Conclusion and future works

A lot of ways to extend the idea.

• extension to full linear logic, second and first order.

�

better design for logic?

• hopes in complexity theory (descriptive?).

�

better understanding of logic, better understanding of complexity?

Thank you for listening!

5/5

Conclusion and future works

A lot of ways to extend the idea.

• extension to full linear logic, second and first order.

�

better design for logic?

• hopes in complexity theory (descriptive?).

�

better understanding of logic, better understanding of complexity?

Thank you for listening!

5/5

