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Curry-Howard-Lambek correspondence (CHL)
The unclear status of logic and computation

Programming = Proving. We only discovered a small part.

@)
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Curry-Howard-Lambek correspondence (CHL)
The unclear status of logic and computation

Disjointness. CHL is an identity.

)

Logic Computation

The approach of Girard’s transcendental syntax (according to me) [ v
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Local interaction by fusion :
[X, +f(X), —h(Z, X)]V[—f(1)] = {X — 1}[X,—h(Z, X)] = [1, —h(Z,1)]
L Variant of Robinson’s resolution used in logic programming
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Execution Ex(®) : construct all “connexion graphs”, contracts everything by fusion
L obtain a new constellation

L programming with structural constraints and information flows.

. 3 methods of execution developed in the thesis.

A* :=[—i(W), +a(W, qo)] + [—al(e, a2), accept] + [—a(0 - W, gq), +a(W, g¢) 1+

[—a(1-W, ge), +a(W, qo)]1+[—a(0-W, qo), +a(W, 1)1+ [—a(0-W, 1), +a(W, a2)]

?
The problem [accept] € Ex(A*) simulates word acceptance.
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Appendix



Stellar resolution : execution
Abstract execution

Actual connexion — Dependency multigraph (showing compatible rays)

-

¢ — 02 — &) — ¢ — ¢3 ¢ — ¢2 — @3

Diagram. Multigraph homomorphism § : G5 — D[ ®]
L with functions 8, for each vertex v associating rays to incident edges
L Gs required to be non-empty, finite and connected

Diagram evaluation. Edge contraction by fusion (correct diagram if no failure)

Execution. Ex($) = evaluation of all saturated and correct (no failure) diagrams.

Variants. Effective versions with concrete and interactive execution.
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Stellar resolution : execution (2/2)
Concrete and interactive execution

Concrete execution. Iterative construction of diagrams / tilings.

O $1— ¢2 — @3 evaluated into ¢4

$1— 92 — ¢3 $1— @2 — ¢; — ¢3 evaluated into (5
¢ — ¢ — &, — ¢

Duplicates removed by checking multigraph isomorphism...

Interactive execution. Fusion of stars “on the fly” (without postponing evaluation)
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