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Logic with proof systems

Notion of proof. I want to prove C. I assume A,B, .... I conclude C.

How are proofs formalised?

Proof systems with inference rules and sequents

hypotheses ` conclusion ,A ` B
 ` A⇒ B

 ` A⇒ B  ` A
 ` B

Proof trees
ax

,A,B ` A ⇒ i
,A ` B⇒ A ⇒ i

 ` A⇒ (B⇒ A)

□
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Computation with functional programs
Functions/programs : (f : x 7→ a), Computation : t1 ; t2 ; ... ; tn

How are type systems for functional programs formalised?

Typing systems with typing rules :

context ` program : type
, x : A ` b : B

 ` (f : x 7→ b) : A→ B
 ` f : A→ B  ` a : A

 ` f(a) : B

Typing trees
ax

, x : A, y : B ` A → i
, x : A ` (y 7→ x) : B→ A → i

 ` (x 7→ (y 7→ x)) : A→ (B→ A)

□
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Curry-Howard-Lambek correspondence (CHL)

Formal correspondence between logic and computation.

, x : A ` b : B → i
 ` (f : x 7→ b) : A→ B

 ` f : A→ B  ` a : A → e
 ` f(a) : B

Logic Computation
Inference rules Typing rules

Formula Type
Proof (Functional) Program

Implication⇒ Function type→
Cut-elimination Execution/evaluation

Leads to : cultural mix in proof/type theory, proof assistants, ...
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Curry-Howard-Lambek correspondence (CHL)
The unclear status of logic and computation

Programming = Proving. We only discovered a small part.

CHL

A logico-computational world
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Curry-Howard-Lambek correspondence (CHL)
The unclear status of logic and computation

Disjointness. CHL is an identity.

CHL

Logic Computation

The approach of Girard’s transcendental syntax (according to me)□ 4/21



A long trip

Logic Computation

Curry-Howard-Lambek (CHL)

Proof-structures / Proof-nets

Transcendental Syntax

Jean-Yves Girard’s works

The subject of my thesis

• Formalisation of transcendental syntax

↰

4 cryptic papers

↰

no formal definition / proof

↰

almost no references

↰

no people working on it

• Bridge between CHL and TS

↰

reconstruction of a context

↰

connexions with other subjects

• A new perspective on logic□
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A modern presentation of proofs in multiplicative linear logic
Proof-structures as “aspiring proofs”. A “parallel” presentation of proofs.

↰

case of multiplicative linear logic (MLL)

ax

Axiom

cut

Cut

⊗

Tensor

`

Par

They are reducible networks. Cut-elimination ' program evaluation/execution :

ax

cut

ax/cut; ⊗ `

cut

⊗/;̀ cut
cut

↰

computation with “linear” functional programs (using argument exactly once)□
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Danos-Regnier correctness criterion by testing

Proof-structure Switching 1 Switching 2

1 2

⊗
5

3 4

`
6

ax
ax

1 2

⊗
5

3 4

`L

6

ax
ax

1 2

⊗
5

3 4

`R

6

ax
ax

Given a proof-structure :

• it passes all the tests −→ it is logical (a correct proof = a proof-net)

• it does not −→ it is not logical

• reminiscent of program testing

□
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Geometry of Interaction (GoI) : an abstraction of proofs

1 2

`
7

3 64 5

⊗
8

cut

ax ax ax

• Logical rules define constraints on possible paths

– cut-elimination : maximal constrained paths
– correctness criterion : criterion over constrained paths

• Alternative paths models : permutations, operator algebras, graphs (Seiller) etc

□
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Transcendental Syntax (TS) : a synthesis
Logic reconstructed from computation

Computation
Reducible object

Result

Procedure

Logic
Typing by interaction (Usage)

Typing by finite testing (Usine)

We have to select a model of computation as elementary material.

• Computation : model of computation called “stellar resolution”

↰

because it generalises the notion of contrained path

↰

only an informal sketch in Girard’s paper

To reconstruct (linear) logic through proof-nets.□

9/21



Transcendental Syntax (TS) : a synthesis
Logic reconstructed from computation

Computation
Reducible object

Result

Procedure

Logic
Typing by interaction (Usage)

Typing by finite testing (Usine)

We have to select a model of computation as elementary material.

• Computation : model of computation called “stellar resolution”

↰

because it generalises the notion of contrained path

↰

only an informal sketch in Girard’s paper

To reconstruct (linear) logic through proof-nets.□

9/21



Transcendental Syntax (TS) : a synthesis
Logic reconstructed from computation

Computation
Reducible object

Result

Procedure

Logic
Typing by interaction (Usage)

Typing by finite testing (Usine)

We have to select a model of computation as elementary material.

• Computation : model of computation called “stellar resolution”

↰

because it generalises the notion of contrained path

↰

only an informal sketch in Girard’s paper

To reconstruct (linear) logic through proof-nets.□

9/21



Transcendental Syntax (TS) : a synthesis
Logic reconstructed from computation

Computation
Reducible object

Result

Procedure

Logic
Typing by interaction (Usage)

Typing by finite testing (Usine)

We have to select a model of computation as elementary material.

• Computation : model of computation called “stellar resolution”

↰

because it generalises the notion of contrained path

↰

only an informal sketch in Girard’s paper

To reconstruct (linear) logic through proof-nets.□

9/21



Transcendental Syntax (TS) : a synthesis
Logic reconstructed from computation

Computation
Reducible object

Result

Procedure

Logic
Typing by interaction (Usage)

Typing by finite testing (Usine)

We have to select a model of computation as elementary material.

• Computation : model of computation called “stellar resolution”

↰

because it generalises the notion of contrained path

↰

only an informal sketch in Girard’s paper

To reconstruct (linear) logic through proof-nets.□

9/21



Transcendental Syntax (TS) : a synthesis
Logic reconstructed from computation

Computation
Reducible object

Result

Procedure

Logic
Typing by interaction (Usage)

Typing by finite testing (Usine)

We have to select a model of computation as elementary material.

• Computation : model of computation called “stellar resolution”

↰

because it generalises the notion of contrained path

↰

only an informal sketch in Girard’s paper

To reconstruct (linear) logic through proof-nets.□

9/21



Transcendental Syntax (TS) : a synthesis
Logic reconstructed from computation

Computation
Reducible object

Result

Procedure

Logic
Typing by interaction (Usage)

Typing by finite testing (Usine)

We have to select a model of computation as elementary material.

• Computation : model of computation called “stellar resolution”

↰

because it generalises the notion of contrained path

↰

only an informal sketch in Girard’s paper

To reconstruct (linear) logic through proof-nets.

□

9/21



Transcendental Syntax (TS) : a synthesis
Logic reconstructed from computation

Computation
Reducible object

Result

Procedure

Logic
Typing by interaction (Usage)

Typing by finite testing (Usine)

We have to select a model of computation as elementary material.

• Computation : model of computation called “stellar resolution”

↰

because it generalises the notion of contrained path

↰

only an informal sketch in Girard’s paper

To reconstruct (linear) logic through proof-nets.□ 9/21



Stellar resolution

• Rays : r ::= X | f(r1, ..., rk) | +f(r1, ..., rk) | −f(r1, ..., rk) e.g. +f(X)

• Stars : finite indexed family of rays φ := [r1, ..., rk] e.g. [X,+f(X),−h(Z, X)]
• Constellation : indexed family of stars  := φ1 + ... + φn↰

e.g. [X,+f(X),−h(Z, X)] + [−f(1)]

Local interaction by fusion :
[X,+f(X),−h(Z, X)]▽[−f(1)] = {X 7→ 1}[X,−h(Z, X)] = [1,−h(Z, 1)]

↰

Variant of Robinson’s resolution used in logic programming
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Programming with stellar resolution

Execution Ex() : construct all “connexion graphs”, contracts everything by fusion

↰

obtain a new constellation

↰

programming with structural constraints and information flows.

↰

3 methods of execution developed in the thesis.

The problem [accept]
?∈ Ex(A⋆) simulates word acceptance.
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Results on stellar resolution
Several encoding of models of computation :

• logic programs (with Horn clauses)

• generalised circuits (subsuming boolean/arithmetic circuits)

• state machines (automata, Turing machines, ...)

• self-assembling tile systems (used in DNA computing)

↰

encoding of abstract tile assembly model (aTAM)

↰

stellar resolution very close to Jonoska’s flexible tiles

Associativity of fusion. when fusion succeeds, φ1
i,j
▽(φ2

i′ ,j′
▽ φ3) ≈α (φ1

i,j
▽φ2)

i′ ,j′
▽ φ3

Partial pre-execution (under condition). Ex( ] ′) ' Ex(Ex() ] ′)
Associativity of execution. Ex(1 ] Ex(2 ] 3)) ' Ex(Ex(1 ] 2) ] 3)
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Interpretation of multiplicative linear logic

1 2 3 64 5

`
7

⊗
8

cut

ax ax ax

More general framework : non-proof-structures can enjoy a logical Interpretation□
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Logical interpretation : Girard’s Usine

Proof-structure Switching 1 Switching 2

1 2

⊗
5

3 4

`
6

ax
ax

1 2

⊗
5

3 4

`L

6

ax
ax

1 2

⊗
5

3 4

`R

6

ax
ax

• Top and bottom become constellations structurally imitating proof-structures

↰

tensor ⊗ is [−1(X),−2(X), 5(X)]

↰

left par`L is [−3(X),6(X)] + [−4(X)]↰

 interacting with switch1 , ...,switchn

• Usine : judges from structure/shape/appearance, generalises type systems

□
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Logical interpretation : Girard’s Usage

Usage : judges from actions/interactions

↰

uses realisability techniques (e.g. Krivine’s classical realisability)

↰

alternative approaches : Riba (with untyped λ-calculus), Beffara (with process calculi)

• Choice of a symmetric binary “orthogonality” relation over constellations  ⊥ ′

↰

 passes the test ′ (or the converse)

↰

 interacts correctly with ′

↰

3 orthogonality relations studied in the thesis

• Constellations organised in “social groups” (sets) A := {1, ...,n}

• Orthogonal (sort of negation) A⊥ := { | ∀′ ∈ A, ⊥ ′}
• Type/Behaviours A when ∃B. A = B⊥, definition by interaction

• Types as combination of behaviours : A⊗ B, A` B, A ⊸ B□
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Classical results : soundness and completeness

Classical theorems of logic but new in this context (MLL and MLL+MIX).

Induced behaviour. Type/formula label `  turned into Usage’s behaviour JK.
Full soundness. Given a proof-netR of conclusions ` , Ex(R⋆) ∈ J` K.
Completeness. If a constellation  ∈ J` K is “proof-like” w.r.t. ` , then there is a
corresponding proof-net of conclusions ` .
□
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Conclusion
Future works and some possible extensions

• Extensions beyond multiplicative linear logic (MLL)

↰

non-determinism (MALL) and duplication/erasure (MELL)

↰

Girard’s apodictic/epidictic (local and global mechanisms)

↰

update of proof-nets

• Interpretation of predicate calculus

• Possible generalisation of Krivine and Beffara works on realisability

• Open problems in computational complexity (e.g. P
?
= NP).

↰

Implicit complexity : proof systems capturing complexity classes

↰

Descriptive complexity : logical languages capturing complexity classes

■

18/21



Conclusion
Future works and some possible extensions

• Extensions beyond multiplicative linear logic (MLL)

↰

non-determinism (MALL) and duplication/erasure (MELL)

↰

Girard’s apodictic/epidictic (local and global mechanisms)

↰

update of proof-nets

• Interpretation of predicate calculus

• Possible generalisation of Krivine and Beffara works on realisability

• Open problems in computational complexity (e.g. P
?
= NP).

↰

Implicit complexity : proof systems capturing complexity classes

↰

Descriptive complexity : logical languages capturing complexity classes

■

18/21



Conclusion
Future works and some possible extensions

• Extensions beyond multiplicative linear logic (MLL)

↰

non-determinism (MALL) and duplication/erasure (MELL)

↰

Girard’s apodictic/epidictic (local and global mechanisms)

↰

update of proof-nets

• Interpretation of predicate calculus

• Possible generalisation of Krivine and Beffara works on realisability

• Open problems in computational complexity (e.g. P
?
= NP).

↰

Implicit complexity : proof systems capturing complexity classes

↰

Descriptive complexity : logical languages capturing complexity classes

■

18/21



Conclusion
Future works and some possible extensions

• Extensions beyond multiplicative linear logic (MLL)

↰

non-determinism (MALL) and duplication/erasure (MELL)

↰

Girard’s apodictic/epidictic (local and global mechanisms)

↰

update of proof-nets

• Interpretation of predicate calculus

• Possible generalisation of Krivine and Beffara works on realisability

• Open problems in computational complexity (e.g. P
?
= NP).

↰

Implicit complexity : proof systems capturing complexity classes

↰

Descriptive complexity : logical languages capturing complexity classes

■

18/21



Conclusion
Future works and some possible extensions

• Extensions beyond multiplicative linear logic (MLL)

↰

non-determinism (MALL) and duplication/erasure (MELL)

↰

Girard’s apodictic/epidictic (local and global mechanisms)
↰

update of proof-nets

• Interpretation of predicate calculus

• Possible generalisation of Krivine and Beffara works on realisability

• Open problems in computational complexity (e.g. P
?
= NP).

↰

Implicit complexity : proof systems capturing complexity classes

↰

Descriptive complexity : logical languages capturing complexity classes

■

18/21



Conclusion
Future works and some possible extensions

• Extensions beyond multiplicative linear logic (MLL)

↰

non-determinism (MALL) and duplication/erasure (MELL)

↰

Girard’s apodictic/epidictic (local and global mechanisms)
↰

update of proof-nets

• Interpretation of predicate calculus

• Possible generalisation of Krivine and Beffara works on realisability

• Open problems in computational complexity (e.g. P
?
= NP).

↰

Implicit complexity : proof systems capturing complexity classes

↰

Descriptive complexity : logical languages capturing complexity classes

■

18/21



Conclusion
Future works and some possible extensions

• Extensions beyond multiplicative linear logic (MLL)

↰

non-determinism (MALL) and duplication/erasure (MELL)

↰

Girard’s apodictic/epidictic (local and global mechanisms)
↰

update of proof-nets

• Interpretation of predicate calculus

• Possible generalisation of Krivine and Beffara works on realisability

• Open problems in computational complexity (e.g. P
?
= NP).

↰

Implicit complexity : proof systems capturing complexity classes

↰

Descriptive complexity : logical languages capturing complexity classes

■

18/21



Conclusion
Future works and some possible extensions

• Extensions beyond multiplicative linear logic (MLL)

↰

non-determinism (MALL) and duplication/erasure (MELL)

↰

Girard’s apodictic/epidictic (local and global mechanisms)
↰

update of proof-nets

• Interpretation of predicate calculus

• Possible generalisation of Krivine and Beffara works on realisability

• Open problems in computational complexity (e.g. P
?
= NP).

↰

Implicit complexity : proof systems capturing complexity classes

↰

Descriptive complexity : logical languages capturing complexity classes

■

18/21



Conclusion
Future works and some possible extensions

• Extensions beyond multiplicative linear logic (MLL)

↰

non-determinism (MALL) and duplication/erasure (MELL)

↰

Girard’s apodictic/epidictic (local and global mechanisms)
↰

update of proof-nets

• Interpretation of predicate calculus

• Possible generalisation of Krivine and Beffara works on realisability

• Open problems in computational complexity (e.g. P
?
= NP).

↰

Implicit complexity : proof systems capturing complexity classes

↰

Descriptive complexity : logical languages capturing complexity classes

■

18/21



Conclusion
Future works and some possible extensions

• Extensions beyond multiplicative linear logic (MLL)

↰

non-determinism (MALL) and duplication/erasure (MELL)

↰

Girard’s apodictic/epidictic (local and global mechanisms)
↰

update of proof-nets

• Interpretation of predicate calculus

• Possible generalisation of Krivine and Beffara works on realisability

• Open problems in computational complexity (e.g. P
?
= NP).

↰

Implicit complexity : proof systems capturing complexity classes

↰

Descriptive complexity : logical languages capturing complexity classes

■

18/21



Conclusion
Future works and some possible extensions

• Extensions beyond multiplicative linear logic (MLL)

↰

non-determinism (MALL) and duplication/erasure (MELL)

↰

Girard’s apodictic/epidictic (local and global mechanisms)
↰

update of proof-nets

• Interpretation of predicate calculus

• Possible generalisation of Krivine and Beffara works on realisability

• Open problems in computational complexity (e.g. P
?
= NP).

↰

Implicit complexity : proof systems capturing complexity classes

↰

Descriptive complexity : logical languages capturing complexity classes

■ 18/21



Appendix

19/21



Stellar resolution : execution
Abstract execution

Actual connexion 7−→ Dependency multigraph (showing compatible rays)

φ1 φ2 φ′2 φ′′2 φ3 φ2φ1 φ3

Diagram.Multigraph homomorphism δ : Gδ → D[]

↰

with functions δv for each vertex v associating rays to incident edges

↰

Gδ required to be non-empty, finite and connected

Diagram evaluation. Edge contraction by fusion (correct diagram if no failure)
Execution. Ex() = evaluation of all saturated and correct (no failure) diagrams.
Variants. Effective versions with concrete and interactive execution. 20/21



Stellar resolution : execution (2/2)
Concrete and interactive execution

Concrete execution. Iterative construction of diagrams / tilings.

φ2φ1 φ3

φ1 φ2 φ3 evaluated into ψ1

φ1 φ2 φ′2 φ3 evaluated into ψ2

φ1 φ2 φ′2 φ′′2
...

Duplicates removed by checking multigraph isomorphism...
Interactive execution. Fusion of stars “on the fly” (without postponing evaluation)
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