An exegesis of transcendental syntax

PhD defense

ooo

LIPN - Université Sorbonne Paris Nord

Boris Eng

Logic with proof systems

Notion of proof. | want to prove C. | assume A, B, | conclude C.

/21

Logic with proof systems

Notion of proof. | want to prove C. | assume A, B, | conclude C.
How are proofs formalised ?

/21

Logic with proof systems

Notion of proof. | want to prove C. | assume A, B, | conclude C.

How are proofs formalised ?

Proof systems with inference rules and sequents

NAFB N-A=B TFA

hypotheses I conclusion
r’FA=B FB

/21

Logic with proof systems

Notion of proof. | want to prove C. | assume A, B, | conclude C.

How are proofs formalised ?

Proof systems with inference rules and sequents

. NAFB rNFA=B TFA
hypotheses I conclusion _
r’FA=B FB
Proof trees

—— ax

NABEA

— =

NAFB=A

Fr’FA= (B=>A)

/21

Logic with proof systems

Notion of proof. | want to prove C. | assume A, B, | conclude C.
How are proofs formalised ?

Proof systems with inference rules and sequents

. NAFB rNFA=B TFA
hypotheses I conclusion _
r’FA=B FB
Proof trees
—— ax
NABEA
— =
NAFB=A

Fr’FA= (B=>A)

/21

Computation with functional programs

Functions/programs : (f : x — a), Computation : t; ~ ty ~ ... ~ t,

2/21

Computation with functional programs

Functions/programs : (f : x — a), Computation : t; ~ ty ~ ... ~ t,
How are type systems for functional programs formalised ?

2/21

Computation with functional programs
Functions/programs : (f : x — a), Computation : t; ~ ty ~ ... ~ t,

How are type systems for functional programs formalised ?

Typing systems with typing rules :

Nx:AFb:B FrN-f:A—-B TlFa:A

text - ot
context T program - Pe m L x> b):A— B Mkf(a):B

2/21

Computation with functional programs
Functions/programs : (f : x — a), Computation : t; ~ ty ~ ... ~ t,
How are type systems for functional programs formalised ?

Typing systems with typing rules :

Mx:AFb:B FrFf:A—-»B TFa:A
Nr-(f:x—b):A—B Mkf(a):B

context F program : type

Typing trees
ax

Mx:Ay:BFA
Fx:AF(y—x):B—A
Fr’E(x—(y—x)):A—(B— A)

—

—

2/21

Computation with functional programs
Functions/programs : (f : x — a), Computation : t; ~ ty ~ ... ~ t,
How are type systems for functional programs formalised ?

Typing systems with typing rules :

Mx:AFb:B FrFf:A—-»B TFa:A
Nr-(f:x—b):A—B Mkf(a):B

context F program : type

Typing trees
ax

Mx:Ay:BFA
Fx:AF(y—x):B—A
Fr’E(x—(y—x)):A—(B— A)

—

—

2/21

Curry-Howard-Lambek correspondence (CHL)

Formal correspondence between logic and computation.

Mx:AFb:B . Fr'Ff:A—=B TFa:A

b — e

FrE(f:x—b):A—>B f(a):B

3/21

Curry-Howard-Lambek correspondence (CHL)

Formal correspondence between logic and computation.

Mx:AFb:B . Fr’Ff:A—>B TkFa:A
NE(f:x—b):A—B ’ M-f(a):B
Logic Computation
Inference rules Typing rules
Formula Type
Proof (Functional) Program

Implication =
Cut-elimination

Function type —
Execution/evaluation

— e

3/21

Curry-Howard-Lambek correspondence (CHL)

Formal correspondence between logic and computation.

Mx:AFb:B . Fr’Ff:A—>B TkFa:A
— —e
NE(f:x—b):A—B M-f(a):B
Logic Computation
Inference rules Typing rules
Formula Type
Proof (Functional) Program
Implication = Function type —
Cut-elimination | Execution/evaluation

Leads to : cultural mix in proof/type theory, proof assistants, ... 3/21

Curry-Howard-Lambek correspondence (CHL)
The unclear status of logic and computation

Programming = Proving. We only discovered a small part.

@)

A logico-computational world

4/21

Curry-Howard-Lambek correspondence (CHL)
The unclear status of logic and computation

CHL is an intersection. Only some models of computation are logical.

Logic Computation
4/21

Curry-Howard-Lambek correspondence (CHL)
The unclear status of logic and computation

Disjointness. CHL is an identity.

)

Logic Computation

The approach of Girard’s transcendental syntax (according to me) [v

A long trip

Logic Computation

X

Curry-Howard-Lambek (CHL)
Proof-structures / Proof-nets

YJean-Yves Girard’s works

Transcendental Syntax

5/21

A long trip

Logic Computation

The subject of my thesis
\ / e Formalisation of transcendental syntax

Curry-Howard-Lambek (CHL)

Proof-structures / Proof-nets

YJean-Yves Girard’s works

Transcendental Syntax
5/21

A long trip

Logic Computation
The subject of my thesis
\ / e Formalisation of transcendental syntax
Curry-Howard-Lambek (CHL) L, 4 cryptic papers

f

Proof-structures / Proof-nets
YJean-Yves Girard’s works

Transcendental Syntax
5/21

A long trip

Logic Computation
The subject of my thesis
\ / e Formalisation of transcendental syntax
Curry-Howard-Lambek (CHL) L, 4 cryptic papers
1, L no formal definition / proof

Proof-structures / Proof-nets
YJean-Yves Girard’s works

Transcendental Syntax
5/21

A long trip

Logic Computation

X

Curry-Howard-Lambek (CHL)
Proof-structures / Proof-nets

YJean-Yves Girard’s works

Transcendental Syntax

The subject of my thesis

e Formalisation of transcendental syntax
L 4 cryptic papers
L no formal definition / proof
L almost no references

5/21

A long trip

Logic Computation
The subject of my thesis
\ / e Formalisation of transcendental syntax
Curry-Howard-Lambek (CHL) L, 4 cryptic papers
1, L no formal definition / proof
L almost no references

Proof-structures / Proof-nets . .
. L no people working on it

YJean-Yves Girard’s works

Transcendental Syntax

5/21

A long trip

Logic Computation
The subject of my thesis
\ / e Formalisation of transcendental syntax
Curry-Howard-Lambek (CHL) L, 4 cryptic papers
1, L no formal definition / proof
L almost no references

Proof-structures / Proof-nets . .
. L no people working on it

e Bridge between CHL and TS

YJean-Yves Girard’s works

Transcendental Syntax

5/21

A long trip

Logic Computation
The subject of my thesis
\ / e Formalisation of transcendental syntax
Curry-Howard-Lambek (CHL) L, 4 cryptic papers
1, L no formal definition / proof
L almost no references

Proof-structures / Proof-nets . .
. L no people working on it

: e Bridge between CHL and TS
‘;’Jean—Yves Girard’s works L reconstruction of a context

Transcendental Syntax

5/21

A long trip

Logic Computation
The subject of my thesis
\ / e Formalisation of transcendental syntax
Curry-Howard-Lambek (CHL) L, 4 cryptic papers
1, L no formal definition / proof
L almost no references

L no people working on it

: e Bridge between CHL and TS
‘;’Jean—Yves Girard’s works L reconstruction of a context
; L connexions with other subjects

Proof-structures / Proof-nets

Transcendental Syntax

5/21

A long trip

Logic Computation
The subject of my thesis
\ / e Formalisation of transcendental syntax
Curry-Howard-Lambek (CHL) L, 4 cryptic papers
1, L no formal definition / proof
L almost no references

L no people working on it

: e Bridge between CHL and TS
‘;’Jean—Yves Girard’s works L reconstruction of a context

Proof-structures / Proof-nets

L connexions with other subjects

5 e A new perspective on logic
Transcendental Syntax

5/21

A long trip

Logic Computation
The subject of my thesis
\ / e Formalisation of transcendental syntax
Curry-Howard-Lambek (CHL) L, 4 cryptic papers
1, L no formal definition / proof
L almost no references

L no people working on it

: e Bridge between CHL and TS
‘;’Jean—Yves Girard’s works L reconstruction of a context

Proof-structures / Proof-nets

L connexions with other subjects

5 e A new perspective on logic [
Transcendental Syntax

5/21

A modern presentation of proofs in multiplicative linear logic

Proof-structures as “aspiring proofs”. A “parallel” presentation of proofs.
L case of multiplicative linear logic (MLL)

,haxj, NS \7?/
. . ®
: L>cut<—J {

Axiom Cut Tensor Par

6/21

A modern presentation of proofs in multiplicative linear logic

Proof-structures as “aspiring proofs”. A “parallel” presentation of proofs.
L case of multiplicative linear logic (MLL)

faxj NS \73/
. . ®
- S SO % !

Axiom Cut Tensor Par

They are reducible networks. Cut-elimination >~ program evaluation/execution :

faxw' .\ /. .\ /.
®

5 3 . ax/cut . i e/3 L cut . . [
L J - : ! - cut
cut

L'cut<—j

6/21

A modern presentation of proofs in multiplicative linear logic

Proof-structures as “aspiring proofs”. A “parallel” presentation of proofs.
L case of multiplicative linear logic (MLL)

faxj NS \73/
. . ®
- S SO % !

Axiom Cut Tensor Par

They are reducible networks. Cut-elimination >~ program evaluation/execution :

(= '\@/’ '\Qy/ L . .
ax/cut /% cu
g & P e
cut L, cut <—J

L, computation with “linear” functional programs (using argument exactly once)

6/21

A modern presentation of proofs in multiplicative linear logic

Proof-structures as “aspiring proofs”. A “parallel” presentation of proofs.
L case of multiplicative linear logic (MLL)

faxj NS \73/
. . ®
- S SO % !

Axiom Cut Tensor Par

They are reducible networks. Cut-elimination >~ program evaluation/execution :

(= '\@/’ '\Qy/ L . .
ax/cut /% cu
g & P e
cut L, cut <—J

L computation with “linear” functional programs (using argument exactly once) [

6/21

Danos-Regnier correctness criterion by testing

Proof-structure Switching 1 Switching 2
ax ax ax
e) el) | e)
\ / \ / \ / \ \ / /
® % ® o ® R
I I | | | |
5 6 5 6 5 6

Given a proof-structure :

e it passes all the tests — it is logical (a correct proof = a proof-net)

e it does not — it is not logical

7/21

Danos-Regnier correctness criterion by testing

Proof-structure Switching 1 Switching 2
ax ax ax
e) el) | e)
\ / \ / \ / \ \ / /
® % ® o ® R
I I | | | |
5 6 5 6 5 6

Given a proof-structure :

e it passes all the tests — it is logical (a correct proof = a proof-net)

e it does not — it is not logical

e reminiscent of program testing

7/21

Danos-Regnier correctness criterion by testing

Proof-structure Switching 1 Switching 2
ax ax ax
e) el) | e)
\ / \ / \ / \ \ / /
® % ® o ® R
I I | | | |
5 6 5 6 5 6

Given a proof-structure :

O

e it passes all the tests — it is logical (a correct proof = a proof-net)

e it does not — it is not logical

e reminiscent of program testing

7/21

Geometry of Interaction (Gol) : an abstraction of proofs

cut

e Logical rules define constraints on possible paths

8/21

Geometry of Interaction (Gol) : an abstraction of proofs

cut

e Logical rules define constraints on possible paths

- cut-elimination : maximal constrained paths

8/21

Geometry of Interaction (Gol) : an abstraction of proofs

cut

e Logical rules define constraints on possible paths

- cut-elimination : maximal constrained paths
- correctness criterion : criterion over constrained paths

8/21

Geometry of Interaction (Gol) : an abstraction of proofs

cut

e Logical rules define constraints on possible paths

- cut-elimination : maximal constrained paths
- correctness criterion : criterion over constrained paths

e Alternative paths models : permutations, operator algebras, graphs (Seiller) etc

8/21

Geometry of Interaction (Gol) : an abstraction of proofs

cut

e Logical rules define constraints on possible paths
- cut-elimination : maximal constrained paths
- correctness criterion : criterion over constrained paths

e Alternative paths models : permutations, operator algebras, graphs (Seiller) etc
O

8/21

Transcendental Syntax (TS) : a synthesis

Logic reconstructed from computation

9/21

Transcendental Syntax (TS) : a synthesis

Logic reconstructed from computation

Computation Logic
Reducible object Typing by interaction (Usage)
Procedure

Result Typing by finite testing (Usine)

9/21

Transcendental Syntax (TS) : a synthesis

Logic reconstructed from computation

Computation Logic
Reducible object Typing by interaction (Usage)
Procedure
Result Typing by finite testing (Usine)

We have to select a model of computation as elementary material.

9/21

Transcendental Syntax (TS) : a synthesis

Logic reconstructed from computation

Computation Logic
Reducible object Typing by interaction (Usage)
Procedure
Result Typing by finite testing (Usine)

We have to select a model of computation as elementary material.

e Computation : model of computation called “stellar resolution”

9/21

Transcendental Syntax (TS) : a synthesis

Logic reconstructed from computation

Computation Logic
Reducible object Typing by interaction (Usage)
Procedure
Result Typing by finite testing (Usine)

We have to select a model of computation as elementary material.

e Computation : model of computation called “stellar resolution”
L because it generalises the notion of contrained path

9/21

Transcendental Syntax (TS) : a synthesis

Logic reconstructed from computation

Computation Logic
Reducible object Typing by interaction (Usage)
Procedure
Result Typing by finite testing (Usine)

We have to select a model of computation as elementary material.

e Computation : model of computation called “stellar resolution”
L because it generalises the notion of contrained path
L only an informal sketch in Girard’s paper

9/21

Transcendental Syntax (TS) : a synthesis

Logic reconstructed from computation

Computation Logic
Reducible object Typing by interaction (Usage)
Procedure
Result Typing by finite testing (Usine)

We have to select a model of computation as elementary material.

e Computation : model of computation called “stellar resolution”
L because it generalises the notion of contrained path
L only an informal sketch in Girard’s paper

To reconstruct (linear) logic through proof-nets. o/

Transcendental Syntax (TS) : a synthesis

Logic reconstructed from computation

Computation Logic
Reducible object Typing by interaction (Usage)
Procedure
Result Typing by finite testing (Usine)

We have to select a model of computation as elementary material.

e Computation : model of computation called “stellar resolution”
L because it generalises the notion of contrained path
L only an informal sketch in Girard’s paper

To reconstruct (linear) logic through proof-nets. (] o/

Stellar resolution

e Rays:r::=X|f(ry,....r) | +F(re, ..., i) | —F(re, ..., ri) e.g. +f(X)

10/21

Stellar resolution

e Rays:r::=X|f(ry,....r) | +F(re, ..., i) | —F(re, ..., ri) e.g. +f(X)
e Stars : finite indexed family of rays ¢ :=[ry, ..., rg] e.g. [X, +f(X), —h(Z X)]

10/21

Stellar resolution

e Rays:r::=X|f(ry,....r) | +F(re, ..., i) | —F(re, ..., ri) e.g. +f(X)
e Stars : finite indexed family of rays ¢ :=[ry, ..., rg] e.g. [X, +f(X), —h(Z X)]

e Constellation : indexed family of stars ® := ¢, + ... + ¢,
L e.g. [X, +f(X),—h(Z X)] + [—f(1)]

10/21

Stellar resolution

e Rays:r::=X|f(ry,....r) | +f(ra, ...,) | —F(ra, ..., ri) e.g. +f(X)
e Stars : finite indexed family of rays ¢ :=[ry, ..., r¢] e.g. [X, +1(X), —h(Z X)]

e Constellation : indexed family of stars ® := ¢+ ... + ¢,
L e.g. [X, +f(X), —h(Z, X)] + [—f(1)]

+f(X) —f(1)

—h(Z,X) -

10/21

Stellar resolution

e Rays:r::=X|f(ry,....r) | +f(ra, ...,) | —F(ra, ..., ri) e.g. +f(X)
e Stars : finite indexed family of rays ¢ :=[ry, ..., r¢] e.g. [X, +1(X), —h(Z X)]

e Constellation : indexed family of stars ® := ¢+ ... + ¢,
L e.g. [X, +f(X), —h(Z, X)] + [—f(1)]

+£(X) —f(1)
e %0

Local interaction by fusion :

[X, +f(X), —h(Z, X)]1v[—f(1)]

10/21

Stellar resolution

e Rays:ri:=X|f(ry,....r) | +f(ra, ..., i) | —F(re, ..., ri) e.g. +f(X)
e Stars : finite indexed family of rays ¢ :=[ry, ..., rg] e.g. [X, +f(X), —h(Z X)]

e Constellation : indexed family of stars ® := ¢+ ... + ¢,
L e.g. [X, +f(X), —h(Z, X)] + [—f(1)]

{X — 1}X -

{X—=1}—h(ZX)

Local interaction by fusion :
[X, +f(X), —h(Z, X)]V[—f(1)] = {X— 1}[X, —h(Z, X)]

10/21

Stellar resolution

e Rays:r::=X|f(ry,....r) | +f(rq, ..., i) | —f(re, ..., ri) e.g. +f(X)
e Stars : finite indexed family of rays ¢ :=[ry, ..., rg] e.g. [X, +f(X), —h(Z X)]

e Constellation : indexed family of stars ® := ¢+ ... + ¢,
L e.g. [X, +f(X), —h(Z, X)] + [—f(1)]

1-

—h(z,1) -

Local interaction by fusion :
[X, +f(X), —h(Z, X)]V[—f(1)] = {X — 1}[X,—h(Z, X)] = [1, —h(Z,1)]

10/21

Stellar resolution

e Rays:r::=X|f(ry,....r) | +f(rq, ..., i) | —f(re, ..., ri) e.g. +f(X)
e Stars : finite indexed family of rays ¢ :=[ry, ..., rg] e.g. [X, +f(X), —h(Z X)]

e Constellation : indexed family of stars ® := ¢+ ... + ¢,
L e.g. [X, +f(X), —h(Z, X)] + [—f(1)]

1-

—h(z,1) -

Local interaction by fusion :
[X, +f(X), —h(Z, X)]V[—f(1)] = {X — 1}[X,—h(Z, X)] = [1, —h(Z,1)]
L Variant of Robinson’s resolution used in logic programming

10/21

Programming with stellar resolution

Execution Ex(®) : construct all “connexion graphs”, contracts everything by fusion
L, obtain a new constellation

/21

Programming with stellar resolution

Execution Ex(®) : construct all “connexion graphs”, contracts everything by fusion
L, obtain a new constellation
L programming with structural constraints and information flows.

/21

Programming with stellar resolution

Execution Ex(®) : construct all “connexion graphs”, contracts everything by fusion
L obtain a new constellation

L programming with structural constraints and information flows.

L 3 methods of execution developed in the thesis.

/21

Programming with stellar resolution

Execution Ex(®) : construct all “connexion graphs”, contracts everything by fusion
L, obtain a new constellation
L programming with structural constraints and information flows.

L 3 methods of execution developed in the thesis.
0,1

(o) ——(=)
start q - q ~(Q
A= ; 2 ;

/21

Programming with stellar resolution

Execution Ex(®) : construct all “connexion graphs”, contracts everything by fusion
L obtain a new constellation

L programming with structural constraints and information flows.

. 3 methods of execution developed in the thesis.

A* :=[—i(W), +a(W, qo)] + [—a(e, a2), accept] + [—a(0 - W, qo), +a(W, qe)]+

[—a(1-W, ge), +a(W, qo)]1+[—a(0-W, qo), +a(W, 1)1+ [—a(0-W, 1), +a(W, a2)]

n21

Programming with stellar resolution

Execution Ex(®) : construct all “connexion graphs”, contracts everything by fusion
L obtain a new constellation

L programming with structural constraints and information flows.

. 3 methods of execution developed in the thesis.

A* :=[—i(W), +a(W, qo)] + [—al(e, a2), accept] + [—a(0 - W, gq), +a(W, g¢) 1+

[—a(1-W, ge), +a(W, qo)]1+[—a(0-W, qo), +a(W, 1)1+ [—a(0-W, 1), +a(W, a2)]

?
The problem [accept] € Ex(A*) simulates word acceptance.

n21

Results on stellar resolution

Several encoding of models of computation :

12/21

Results on stellar resolution

Several encoding of models of computation :

e |ogic programs (with Horn clauses)

12/21

Results on stellar resolution

Several encoding of models of computation :
e |ogic programs (with Horn clauses)

e generalised circuits (subsuming boolean/arithmetic circuits)

12/21

Results on stellar resolution

Several encoding of models of computation :
e |ogic programs (with Horn clauses)
e generalised circuits (subsuming boolean/arithmetic circuits)

e state machines (automata, Turing machines, ...)

12/21

Results on stellar resolution

Several encoding of models of computation :
e |ogic programs (with Horn clauses)
e generalised circuits (subsuming boolean/arithmetic circuits)
e state machines (automata, Turing machines, ...)

e self-assembling tile systems (used in DNA computing)

12/21

Results on stellar resolution

Several encoding of models of computation :
e |ogic programs (with Horn clauses)
e generalised circuits (subsuming boolean/arithmetic circuits)
e state machines (automata, Turing machines, ...)

e self-assembling tile systems (used in DNA computing)
L encoding of abstract tile assembly model (aTAM)

12/21

Results on stellar resolution

Several encoding of models of computation :

logic programs (with Horn clauses)
generalised circuits (subsuming boolean/arithmetic circuits)
state machines (automata, Turing machines, ...)

self-assembling tile systems (used in DNA computing)
L encoding of abstract tile assembly model (aTAM)
L stellar resolution very close to Jonoska'’s flexible tiles

12/21

Results on stellar resolution

Several encoding of models of computation :
e |ogic programs (with Horn clauses)
e generalised circuits (subsuming boolean/arithmetic circuits)
e state machines (automata, Turing machines, ...)

e self-assembling tile systems (used in DNA computing)
L encoding of abstract tile assembly model (aTAM)
L stellar resolution very close to Jonoska'’s flexible tiles

ij iy NS
Associativity of fusion. when fusion succeeds, ¢V (g2 V ¢3) ~q (¢1Vd2) V @3

12/21

Results on stellar resolution

Several encoding of models of computation :
e |ogic programs (with Horn clauses)
e generalised circuits (subsuming boolean/arithmetic circuits)
e state machines (automata, Turing machines, ...)

e self-assembling tile systems (used in DNA computing)
L encoding of abstract tile assembly model (aTAM)
L stellar resolution very close to Jonoska'’s flexible tiles

ij iy NS
Associativity of fusion. when fusion succeeds, ¢V (g2 V ¢3) ~q (¢1Vd2) V @3

Partial pre-execution (under condition). Ex(® w &) ~ Ex(Ex(®) w &')

12/21

Results on stellar resolution

Several encoding of models of computation :
e |ogic programs (with Horn clauses)
e generalised circuits (subsuming boolean/arithmetic circuits)
e state machines (automata, Turing machines, ...)

e self-assembling tile systems (used in DNA computing)
L encoding of abstract tile assembly model (aTAM)
L stellar resolution very close to Jonoska'’s flexible tiles

Associativity of fusion. when fusion succeeds, ¢1%(¢2"VJ $3) Ry (¢1%¢2),vj 3
Partial pre-execution (under condition). Ex(® w &) ~ Ex(Ex(®) w &')

Associativity of execution. Ex(®1 W Ex(®, W $3)) ~ Ex(Ex(®1 W $,) & 3)

12/21

Interpretation of multiplicative linear logic

cut

13/21

Interpretation of multiplicative linear logic

1

L
B
o)

cut
cut

S
]
|

13/21

Interpretation of multiplicative linear logic

rax
1

L
B
o)

cut

0
]
|

cut

[+7(L-X), +7(r - X)] + [3(X), +8(L-X)] + [+8(r - X), 6(X)]

13/21

Interpretation of multiplicative linear logic

rax
1

L
B
o)

cut

70
]
|

cut

1 2 3 4 5 6
[+7(L-X), +7(r - X)] + [3(X), +8(L-X)] + [+8(r - X), 6(X)]

13/21

Interpretation of multiplicative linear logic

rax
1

L
B
o)

cut

70
]
|

cut

1 2 3 4 5 6
[+7(L-X), +7(r - X)] + [3(X), +8(L-X)] + [+8(r - X), 6(X)]

13/21

Interpretation of multiplicative linear logic

rax
1

L
B
o)

cut

70
]
|

cut

[+7({ - X), +7(i -X)] + [3(35(), +8(‘{ -X)] + [+8(5r-X), 6(6)()] +[—7(X), —8(X)].

13/21

Interpretation of multiplicative linear logic

[+7({ - X), +7($‘ -X)] + [3(3)(), +8(‘{ -X)] + [+8(?~-X), 6(6)()] +[—7(X), —8(X)].

More general framework : non-proof-structures can enjoy a logical Interpretation

13/21

Interpretation of multiplicative linear logic

[+7({ - X), +7($‘ -X)] + [3(3)(), +8(‘{ -X)] + [+8(?~-X), 6(6)()] +[—7(X), —8(X)].

More general framework : non-proof-structures can enjoy a logical Interpretation [

13/21

Logical interpretation : Girard’s Usine

Proof-structure Switching 1 Switching 2
ax ax ax
e e el I]
\ / \ / \ / \ \ / /
® s ® ko ® DR

! ! | | | |

5 6 5 6 5 6

14/21

Logical interpretation : Girard’s Usine

Proof-structure Switching 1 Switching 2
ax ax ax
e e el I]
\ / \ / \ / \ \ / /
® s ® ko ® DR

! ! | | | |

5 6 5 6 5 6

14/21

Logical interpretation : Girard’s Usine

Proof-structure Switching 1 Switching 2
ax ax ax
e e el I]
\ / \ / \ / \ \ / /
® s ® oy ® DR

! ! | | | |

5 6 5 6 5 6

e Top and bottom become constellations structurally imitating proof-structures

14/21

Logical interpretation : Girard’s Usine

Proof-structure Switching 1 Switching 2

ax ax ax
e) | ca P | a0
1 2 3 4 |1 2 3 4 |1 2 3 4
N/ N N/ \ N/ %

® s ® oy ® DR

! ! | | | |

5 6 5 6 5 6

e Top and bottom become constellations structurally imitating proof-structures

L tensor ® is [—1(X), —2(X), 5(X)]

14/21

Logical interpretation : Girard’s Usine

Proof-structure Switching 1 Switching 2

ax ax ax
e) | ca P | a0
1 2 3 4 |1 2 3 4 |1 2 3 4
N/ N/ N AN N/ /

® s ® oy ® DR

! ! | | | |

5 6 5 6 5 6

e Top and bottom become constellations structurally imitating proof-structures

L tensor ® is [—1(X), —2(X), 5(X)]
L left par 28 is [—3(X), 6(X)] + [—4(X)]

14/21

Logical interpretation : Girard’s Usine

Proof-structure Switching 1 Switching 2

ax ax ax
e) | ca P | a0
1 2 3 4 |1 2 3 4 |1 2 3 4
N/ N/ N AN N/ /

® s ® oy ® DR

! ! | | | |

5 6 5 6 5 6

e Top and bottom become constellations structurally imitating proof-structures

L tensor ® is [—1(X), —2(X), 5(X)]
L left par 28 is [—3(X), 6(X)] + [—4(X)]

L @ interacting with ®¢,itch,, ..

. q’switchn

Logical interpretation : Girard’s Usine

Proof-structure Switching 1 Switching 2

ax ax ax
e) | ca P | a0
1 2 3 4 |1 2 3 4 |1 2 3 4
N/ N/ N AN N/ /

® s ® oy ® DR

| | | | | |

5 6 5 6 5 6

e Top and bottom become constellations structurally imitating proof-structures

L tensor ® is [—1(X), —2(X), 5(X)]
L left par 28 is [—3(X), 6(X)] + [—4(X)]

L @ interacting with ®¢,itch,, ..

e Usine : judges from structure/shape/appearance, generalises type systems

. q’switchn

14/21

Logical interpretation : Girard’s Usine

Proof-structure Switching 1 Switching 2

ax ax ax
e) | ca P | a0
1 2 3 4 |1 2 3 4 |1 2 3 4
N/ N/ N AN N/ /

® s ® oy ® DR

| | | | | |

5 6 5 6 5 6

O

e Top and bottom become constellations structurally imitating proof-structures

L tensor ® is [—1(X), —2(X), 5(X)]
L left par 28 is [—3(X), 6(X)] + [—4(X)]

L @ interacting with ®¢,itch,, ..

e Usine : judges from structure/shape/appearance, generalises type systems

. q’switchn

14/21

Logical interpretation : Girard’s Usage

Usage : judges from actions/interactions

15/21

Logical interpretation : Girard’s Usage

Usage : judges from actions/interactions
L uses realisability techniques (e.g. Krivine’s classical realisability)

15/21

Logical interpretation : Girard’s Usage

Usage : judges from actions/interactions
L uses realisability techniques (e.g. Krivine’s classical realisability)
L alternative approaches : Riba (with untyped A-calculus), Beffara (with process calculi)

15/21

Logical interpretation : Girard’s Usage

Usage : judges from actions/interactions
L uses realisability techniques (e.g. Krivine’s classical realisability)
L alternative approaches : Riba (with untyped A-calculus), Beffara (with process calculi)

e Choice of a symmetric binary “orthogonality” relation over constellations 1 &’

15/21

Logical interpretation : Girard’s Usage

Usage : judges from actions/interactions
L uses realisability techniques (e.g. Krivine’s classical realisability)
L alternative approaches : Riba (with untyped A-calculus), Beffara (with process calculi)
e Choice of a symmetric binary “orthogonality” relation over constellations 1 &’
L & passes the test ®’ (or the converse)

15/21

Logical interpretation : Girard’s Usage

Usage : judges from actions/interactions
L uses realisability techniques (e.g. Krivine’s classical realisability)
L alternative approaches : Riba (with untyped A-calculus), Beffara (with process calculi)
e Choice of a symmetric binary “orthogonality” relation over constellations 1 &’
L & passes the test ®’ (or the converse)
L & interacts correctly with &’

15/21

Logical interpretation : Girard’s Usage

Usage : judges from actions/interactions
L uses realisability techniques (e.g. Krivine’s classical realisability)
L alternative approaches : Riba (with untyped A-calculus), Beffara (with process calculi)
e Choice of a symmetric binary “orthogonality” relation over constellations 1 &’
L & passes the test ®’ (or the converse)
L & interacts correctly with &’
L 3 orthogonality relations studied in the thesis

15/21

Logical interpretation : Girard’s Usage

Usage : judges from actions/interactions
L uses realisability techniques (e.g. Krivine’s classical realisability)
L alternative approaches : Riba (with untyped A-calculus), Beffara (with process calculi)

e Choice of a symmetric binary “orthogonality” relation over constellations 1 &’
L & passes the test ®’ (or the converse)
L & interacts correctly with &’
L 3 orthogonality relations studied in the thesis

e Constellations organised in “social groups” (sets) A := {®;, ..., ®,}

15/21

Logical interpretation : Girard’s Usage

Usage : judges from actions/interactions
L uses realisability techniques (e.g. Krivine’s classical realisability)
L alternative approaches : Riba (with untyped A-calculus), Beffara (with process calculi)
e Choice of a symmetric binary “orthogonality” relation over constellations 1 &’
L & passes the test ®’ (or the converse)
L & interacts correctly with &’
L 3 orthogonality relations studied in the thesis
e Constellations organised in “social groups” (sets) A := {®;, ..., ®,}

e Orthogonal (sort of negation) AL := {® | V&’ €A, & L &'}

15/21

Logical interpretation : Girard’s Usage

Usage : judges from actions/interactions
L uses realisability techniques (e.g. Krivine’s classical realisability)
L alternative approaches : Riba (with untyped A-calculus), Beffara (with process calculi)

e Choice of a symmetric binary “orthogonality” relation over constellations 1 &’
L & passes the test ®’ (or the converse)
L & interacts correctly with &’
L 3 orthogonality relations studied in the thesis

e Constellations organised in “social groups” (sets) A := {®;, ..., ®,}
e Orthogonal (sort of negation) AL := {® | V&’ €A, & L &'}
e Type/Behaviours A when dB. A = B, definition by interaction

15/21

Logical interpretation : Girard’s Usage

Usage : judges from actions/interactions
L uses realisability techniques (e.g. Krivine’s classical realisability)
L alternative approaches : Riba (with untyped A-calculus), Beffara (with process calculi)
e Choice of a symmetric binary “orthogonality” relation over constellations 1 &’
L & passes the test ®’ (or the converse)
L & interacts correctly with &’
L 3 orthogonality relations studied in the thesis
e Constellations organised in “social groups” (sets) A := {®;, ..., ®,}
e Orthogonal (sort of negation) AL := {® | V&’ €A, & L &'}
e Type/Behaviours A when dB. A = B, definition by interaction
e Types as combination of behaviours: A® B, A%B, A-—-oB

15/21

Logical interpretation : Girard’s Usage

Usage : judges from actions/interactions
L uses realisability techniques (e.g. Krivine’s classical realisability)
L alternative approaches : Riba (with untyped A-calculus), Beffara (with process calculi)
e Choice of a symmetric binary “orthogonality” relation over constellations 1 &’
L & passes the test ®’ (or the converse)
L & interacts correctly with &’
L 3 orthogonality relations studied in the thesis
e Constellations organised in “social groups” (sets) A := {®;, ..., ®,}
e Orthogonal (sort of negation) AL := {® | V&’ €A, & L &'}
e Type/Behaviours A when dB. A = B, definition by interaction
e Types as combination of behaviours: A®B, A%B, A-—-oB[]

15/21

Classical results : soundness and completeness

Classical theorems of logic but new in this context (MLL and MLL+MIX).

16/21

Classical results : soundness and completeness

Classical theorems of logic but new in this context (MLL and MLL+MIX).

Induced behaviour. Type/formula label |- " turned into Usage’s behaviour [['].

16/21

Classical results : soundness and completeness

Classical theorems of logic but new in this context (MLL and MLL+MIX).
Induced behaviour. Type/formula label |- " turned into Usage’s behaviour [['].

Full soundness. Given a proof-net 2 of conclusions - I", Ex(% *) € [IT.

16/21

Classical results : soundness and completeness

Classical theorems of logic but new in this context (MLL and MLL+MIX).
Induced behaviour. Type/formula label |- I" turned into Usage’s behaviour [I].
Full soundness. Given a proof-net Z of conclusions - ", Ex(Z *) € [I].

Completeness. If a constellation ¢ € [l] is “proof-like” w.rt. F ", then there is a
corresponding proof-net of conclusions F T.

16/21

Classical results : soundness and completeness

Classical theorems of logic but new in this context (MLL and MLL+MIX).
Induced behaviour. Type/formula label |- I" turned into Usage’s behaviour [I].
Full soundness. Given a proof-net Z of conclusions - ", Ex(Z *) € [I].

Completeness. If a constellation ¢ € [l] is “proof-like” w.rt. F ", then there is a
corresponding proof-net of conclusions F T.

O

16/21

Logical interpretation : Girard’s Usage

Usage : judges from actions/interactions

17/21

Logical interpretation : Girard’s Usage

Usage : judges from actions/interactions
L uses realisability techniques (e.g. Krivine’s classical realisability)

17/21

Logical interpretation : Girard’s Usage
Usage : judges from actions/interactions

L uses realisability techniques (e.g. Krivine’s classical realisability)
L alternative approaches : Riba (with untyped A-calculus), Beffara (with process calculi)

17/21

Logical interpretation : Girard’s Usage

Usage : judges from actions/interactions
L uses realisability techniques (e.g. Krivine’s classical realisability)
L alternative approaches : Riba (with untyped A-calculus), Beffara (with process calculi)

e Choice of a symmetric binary “orthogonality” relation over constellations ® 1 &’

17/21

Logical interpretation : Girard’s Usage

Usage : judges from actions/interactions
L uses realisability techniques (e.g. Krivine’s classical realisability)
L alternative approaches : Riba (with untyped A-calculus), Beffara (with process calculi)
e Choice of a symmetric binary “orthogonality” relation over constellations ® 1 &’
L & passes the test ®’ (or the converse)

17/21

Logical interpretation : Girard’s Usage

Usage : judges from actions/interactions
L uses realisability techniques (e.g. Krivine’s classical realisability)
L alternative approaches : Riba (with untyped A-calculus), Beffara (with process calculi)
e Choice of a symmetric binary “orthogonality” relation over constellations ® 1 &’
L & passes the test ®’ (or the converse)
L & interacts correctly with &’

17/21

Logical interpretation : Girard’s Usage

Usage : judges from actions/interactions
L uses realisability techniques (e.g. Krivine’s classical realisability)
L alternative approaches : Riba (with untyped A-calculus), Beffara (with process calculi)
e Choice of a symmetric binary “orthogonality” relation over constellations ® 1 &’
L & passes the test ®’ (or the converse)
L & interacts correctly with &’

e Constellations organised in “social groups” (sets) A := {®;, ..., ®,}

17/21

Logical interpretation : Girard’s Usage

Usage : judges from actions/interactions
L, uses realisability techniques (e.g. Krivine's classical realisability)
L alternative approaches : Riba (with untyped A-calculus), Beffara (with process calculi)

e Choice of a symmetric binary “orthogonality” relation over constellations ® 1 &’
L & passes the test ®’ (or the converse)
L & interacts correctly with &’

e Constellations organised in “social groups” (sets) A := {®;, ..., ®,}

e Orthogonal (sort of negation) AL := {® | V®’ €A, & L &'}

17/21

Logical interpretation : Girard’s Usage

Usage : judges from actions/interactions
L, uses realisability techniques (e.g. Krivine's classical realisability)
L alternative approaches : Riba (with untyped A-calculus), Beffara (with process calculi)

e Choice of a symmetric binary “orthogonality” relation over constellations ® 1 &’
L & passes the test ®’ (or the converse)
L & interacts correctly with &’

e Constellations organised in “social groups” (sets) A := {®;, ..., ®,}
e Orthogonal (sort of negation) AL := {® | V®’ €A, & L &'}
e Type/Behaviours Awhen dB. A = B+, definition by interaction

17/21

Logical interpretation : Girard’s Usage

Usage : judges from actions/interactions
L, uses realisability techniques (e.g. Krivine's classical realisability)
L alternative approaches : Riba (with untyped A-calculus), Beffara (with process calculi)

e Choice of a symmetric binary “orthogonality” relation over constellations ® 1 &’
L & passes the test ®’ (or the converse)
L & interacts correctly with &’

Constellations organised in “social groups” (sets) A := {&®;, ..., ®,}
Orthogonal (sort of negation) Al := {® | V®’ €A, & 1 &'}
Type/Behaviours A when dB. A = B+, definition by interaction

Types as combination of behaviours: A®B, A%B, A-—-B

17/21

Logical interpretation : Girard’s Usage

Usage : judges from actions/interactions
L, uses realisability techniques (e.g. Krivine's classical realisability)
L alternative approaches : Riba (with untyped A-calculus), Beffara (with process calculi)

e Choice of a symmetric binary “orthogonality” relation over constellations ® 1 &’
L & passes the test ®’ (or the converse)
L & interacts correctly with &’

Constellations organised in “social groups” (sets) A := {&®;, ..., ®,}
Orthogonal (sort of negation) Al := {® | V®’ €A, & 1 &'}
Type/Behaviours A when dB. A = B+, definition by interaction

Types as combination of behaviours: A®B, A%B, A-—-B
D 17/21

Conclusion
Future works and some possible extensions

18/21

Conclusion
Future works and some possible extensions

e Extensions beyond multiplicative linear logic (MLL)

18/21

Conclusion
Future works and some possible extensions

e Extensions beyond multiplicative linear logic (MLL)
L non-determinism (MALL) and duplication/erasure (MELL)

18/21

Conclusion
Future works and some possible extensions

e Extensions beyond multiplicative linear logic (MLL)

L non-determinism (MALL) and duplication/erasure (MELL)
L Girard’s apodictic/epidictic (local and global mechanisms)

18/21

Conclusion
Future works and some possible extensions

e Extensions beyond multiplicative linear logic (MLL)
L non-determinism (MALL) and duplication/erasure (MELL)
L Girard’s apodictic/epidictic (local and global mechanisms)
L, update of proof-nets

18/21

Conclusion
Future works and some possible extensions

e Extensions beyond multiplicative linear logic (MLL)
L non-determinism (MALL) and duplication/erasure (MELL)
L Girard’s apodictic/epidictic (local and global mechanisms)
L, update of proof-nets

e Interpretation of predicate calculus

18/21

Conclusion
Future works and some possible extensions

e Extensions beyond multiplicative linear logic (MLL)
L non-determinism (MALL) and duplication/erasure (MELL)
L Girard’s apodictic/epidictic (local and global mechanisms)
L, update of proof-nets

e Interpretation of predicate calculus

e Possible generalisation of Krivine and Beffara works on realisability

18/21

Conclusion
Future works and some possible extensions

e Extensions beyond multiplicative linear logic (MLL)
L non-determinism (MALL) and duplication/erasure (MELL)
L Girard’s apodictic/epidictic (local and global mechanisms)
L, update of proof-nets

e Interpretation of predicate calculus
e Possible generalisation of Krivine and Beffara works on realisability

?
e Open problems in computational complexity (e.g. P = NP).

18/21

Conclusion
Future works and some possible extensions

e Extensions beyond multiplicative linear logic (MLL)
L non-determinism (MALL) and duplication/erasure (MELL)
L Girard’s apodictic/epidictic (local and global mechanisms)
L, update of proof-nets

e Interpretation of predicate calculus

e Possible generalisation of Krivine and Beffara works on realisability

?
e Open problems in computational complexity (e.g. P = NP).
L Implicit complexity : proof systems capturing complexity classes

18/21

Conclusion
Future works and some possible extensions

e Extensions beyond multiplicative linear logic (MLL)
L non-determinism (MALL) and duplication/erasure (MELL)
L Girard’s apodictic/epidictic (local and global mechanisms)
L, update of proof-nets
e Interpretation of predicate calculus
e Possible generalisation of Krivine and Beffara works on realisability
?
e Open problems in computational complexity (e.g. P = NP).
L Implicit complexity : proof systems capturing complexity classes
L Descriptive complexity : logical languages capturing complexity classes

18/21

Conclusion
Future works and some possible extensions

e Extensions beyond multiplicative linear logic (MLL)
L non-determinism (MALL) and duplication/erasure (MELL)
L Girard’s apodictic/epidictic (local and global mechanisms)
L, update of proof-nets
e Interpretation of predicate calculus
e Possible generalisation of Krivine and Beffara works on realisability
?
e Open problems in computational complexity (e.g. P = NP).
L Implicit complexity : proof systems capturing complexity classes
L Descriptive complexity : logical languages capturing complexity classes

18/21

Appendix

Stellar resolution : execution
Abstract execution

Actual connexion — Dependency multigraph (showing compatible rays)

-

¢ — 02 — &) — ¢ — ¢3 ¢ — ¢2 — @3

Diagram. Multigraph homomorphism § : G5 — D[®]
L with functions 8, for each vertex v associating rays to incident edges
L Gs required to be non-empty, finite and connected

Diagram evaluation. Edge contraction by fusion (correct diagram if no failure)

Execution. Ex($) = evaluation of all saturated and correct (no failure) diagrams.

Variants. Effective versions with concrete and interactive execution.

20/21

Stellar resolution : execution (2/2)
Concrete and interactive execution

Concrete execution. Iterative construction of diagrams / tilings.

O $1— ¢2 — @3 evaluated into ¢4

$1— 92 — ¢3 $1— @2 — ¢; — ¢3 evaluated into (5
¢ — ¢ — &, — ¢

Duplicates removed by checking multigraph isomorphism...

Interactive execution. Fusion of stars “on the fly” (without postponing evaluation)
21/21

